Search This Blog

Thursday, January 6, 2011

Today is 28 September 2007 – We are studying Dynamic Earth Processes

Dynamic Earth Processes is a course of study identified by California as Standard 3.

“Earth sciences use concepts, principles, and theories from the physical sciences and mathematics and often draw on facts and information from the biological sciences. To understand Earth’s magnetic field and magnetic patterns of the sea floor, students will need to recall, or in some cases learn, the basics of magnetism. To understand circulation in the atmosphere, hydrosphere, and lithosphere, students should know about convection, density and buoyancy, and the Coriolis effect. Earthquake epicenters are located by using geometry. To understand the formation of igneous and sedimentary minerals, students must master concepts related to crystallization and solution chemistry. “

“Because students in grades nine through twelve may take earth science before they study chemistry or physics, some background information from the physical sciences needs to be introduced in sufficient detail. From standards presented earlier, students should know about plate tectonics as a driving force that shapes Earth’s surface. They should know that evidence supporting plate tectonics includes the shape of the continents, the global distribution of fossils and rock types, and the location of earthquakes and volcanoes. They should also understand that plates float on a hot, though mostly solid, slowly convecting mantle. They should be familiar with basic characteristics of volcanoes and earthquakes and the resulting changes in features of Earth’s surface from volcanic and earthquake activity.”

3. Plate tectonics operating over geologic time has changed the patterns of land, sea, and mountains on Earth’s surface. As the basis for understanding this concept:

a. Students know features of the ocean floor (magnetic patterns, age, and sea-floor topography) provide evidence of plate tectonics.

Much of the evidence for continental drift came from the seafloor rather than from the continents themselves. The longest topographic feature in the world is the midoceanic ridge system—a chain of volcanoes and rift valleys about 40,000 miles long that rings the planet like the seams of a giant baseball. A portion of this system is the Mid-Atlantic Ridge, which runs parallel to the coasts of Europe and Africa and of North and South America and is located halfway between them. The ridge system is made from the youngest rock on the ocean floor, and the floor gets progressively older, symmetrically, on both sides of the ridge. No portion of the ocean floor is more than about 200 million years old. Sediment is thin on and near the ridge. Sediment found away from the ridge thickens and contains progressively older fossils, a phenomenon that also occurs symmetrically.

Mapping the magnetic field anywhere across the ridge system produces a striking pattern of high and low fields in almost perfect symmetrical stripes. A brilliant piece of scientific detective work inferred that these “zebra stripes” arose because lava had erupted and cooled, locking into the rocks a residual magnetic field whose direction matched that of Earth’s field when cooling took place. The magnetic field near the rocks is the sum of the residual field and Earth’s present-day field. Near the lavas that cooled during times of normal polarity, the residual field points along Earth’s field; therefore, the total field is high. Near the lavas that cooled during times of reversed polarity, the residual field points counter to Earth’s field; therefore, the total field is low.

The “stripes” provide strong support for the idea of seafloor spreading because the lava in these stripes can be dated independently and because regions of reversed polarity correspond with times of known geomagnetic field reversals. This theory states that new seafloor is created by volcanic eruptions at the midoceanic ridge and that this erupted material continuously spreads out convectively and opens and creates the ocean basin. At some continental margins deep ocean trenches mark the places where the oldest ocean floor sinks back into the mantle to complete the convective cycle. Continental drift and seafloor spreading form the modern theory of plate tectonics.

3. b. Students know the principal structures that form at the three different kinds of plate boundaries.

There are three different types of plate boundaries, classified according to their relative motions: divergent boundaries; convergent boundaries; and transform, or parallel slip, boundaries. Divergent boundaries occur where plates are spreading apart. Young divergence is characterized by thin or thinning crust and rift valleys; if divergence goes on long enough, midocean ridges eventually develop, such as the Mid-Atlantic Ridge and the East Pacific Rise.

Convergent boundaries occur where plates are moving toward each other. At a convergent boundary, material that is dense enough, such as oceanic crust, may sink back into the mantle and produce a deep ocean trench. This process is known as subduction.

Transform boundaries occur where two plates, or fractured portions of a plate, attempt to slide by each other. These boundaries are known as “faults” and are the source of much earthquake activity.

No comments:

Post a Comment